
Relational Databases
and PostgreSQL

Charles Severance
www.pg4e.com



https://en.wikipedia.org/wiki/IBM_729

OLD
Sorted

NEW
Sorted

Transactions
Sorted

Merge

Sequential
Master
Update
1970s



Random Access

• When you can randomly access 
data...

• How can you lay out data to be 
most efficient?

• Sorting might not be the best 
idea

https://en.wikipedia.org/wiki/Hard_disk_drive_platter



Relational Databases

http://en.wikipedia.org/wiki/Relational_database

Relational databases model data by storing 
rows and columns in tables.  The power of 
the relational database lies in its ability to 
efficiently retrieve data from those tables -

in particular, where the query involves 
multiple tables and the relationships 

between those tables.



Structured Query Language
• Structured Query Language 

(SQL) came out of a 
government / industry 
partnership

• National Institute of 
Standards and Technology 
(NIST)

https://youtu.be/rLUm3vst87g



SQL
Structured Query Language is the 
language we use to issue commands 
to the database

- Create/Insert data

- Read/Select some data

- Update data

- Delete data http://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/ANSI-SPARC_Architecture



Terminology

• Database - contains one or more tables

• Relation (or table) - contains tuples and attributes

• Tuple (or row) - a set of fields which generally represent an “object”
like a person or a music track

• Attribute (also column or field) - one of possibly many elements of 
data corresponding to the object represented by the row



A relation is defined as a set of tuples that have the same attributes.  A tuple usually represents an 
object and information about that object.  Objects are typically physical objects or concepts.  A 
relation is usually described as a table, which is organized into rows and columns.  All the data

referenced by an attribute are in the same domain and conform to the same constraints.
(wikipedia)



Tables / Relations

Columns / Attributes

Rows /
Tuples



Common Database Systems
• Major Database Management Systems in wide use

- PostgreSQL – 100% Open source, feature rich

- Oracle - Large, commercial, enterprise-scale, very tweakable

- MySQL - Fast and scalable - commercial open source

- SqlServer - Very nice - from Microsoft (also Access)

• Smaller projects: SQLite, HSQL, …



SQL Architecture



Using SQL

Database 
Server

PostgresSQL

User
D.B.A.

pgAdmin
(Browser / 
Desktop)

SQL

psql
(Command

Line)

SQL



Starting PostgreSQL Command Line
$ psql –U postgres
Password for user postgres: <password here> 
psql (9.3.5, server 11.2)
Type "help" for help.

postgres=#

Super User Prompt



https://xkcd.com/149/



Your First PostgreSQL Command
postgres-# \l

List of databases 
Name    |  Owner   | Encoding | Collate | Ctype |   Access privileges   

-----------+----------+----------+---------+-------+-----------------------
postgres  | postgres | UTF8     | C       | C     | 
template0 | postgres | UTF8     | C       | C     | =c/postgres          +

|          |          |         |       | postgres=CTc/postgres 
template1 | postgres | UTF8     | C       | C     | =c/postgres          +

|          |          |         |       | postgres=CTc/postgres 
(3 rows)

postgres-# 



Creating a User and Database

postgres=# CREATE USER WITH PASSWORD 'secret';
CREATE ROLE
postgres=# CREATE DATABASE people WITH OWNER '';
CREATE DATABASE
postgres=# \q

https://www.postgresql.org/docs/11/sql-createuser.html
https://www.postgresql.org/docs/11/sql-createdatabase.html



Connecting to a Database

https://www.postgresql.org/docs/11/app-psql.html

$ psql people 
Password for user : <password here> 
psql (9.3.5, server 11.2)

people=> \dt
No relations found.
people=> 

Not a Super User Prompt



Creating a Table
people=> CREATE TABLE users( 
people(>   name VARCHAR(128), 
people(>   email VARCHAR(128)
people(> );
CREATE TABLE
people=> \dt

List of relations
Schema | Name  | Type  | Owner 
--------+-------+-------+------- 
public | users | table | 

(1 row)

people=> \d+ users
Table "public.users" 

Column |          Type          | Modifiers | Storage  | Stats target | Description 
--------+------------------------+-----------+----------+--------------+-------------
name   | character varying(128) |           | extended |              | 
email  | character varying(128) |           | extended |              | 

Has OIDs: no

people=> 

CREATE TABLE users( 
name VARCHAR(128), 
email VARCHAR(128)

);



SQL: Insert

The INSERT statement inserts a row into a table

INSERT INTO users (name, email) VALUES ('Chuck', 'csev@umich.edu') ;
INSERT INTO users (name, email) VALUES ('Somesh', 'somesh@umich.edu') ;
INSERT INTO users (name, email) VALUES ('Caitlin', 'cait@umich.edu') ;
INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu') ;
INSERT INTO users (name, email) VALUES ('Sally', 'sally@umich.edu') ;



SQL: Delete

Deletes a row in a table based on selection criteria

DELETE FROM users WHERE email='ted@umich.edu';



SQL: Update

Allows the updating of a field with a WHERE clause

UPDATE users SET name='Charles' WHERE email='csev@umich.edu';



Retrieving Records: Select

Retrieves a group of records - you can either retrieve all the 
records or a subset of the records with a WHERE clause

SELECT * FROM users;

SELECT * FROM users WHERE email='csev@umich.edu';



Sorting with ORDER BY

You can add an ORDER BY clause to SELECT statements to 
get the results sorted in ascending or descending order

SELECT * FROM users ORDER BY email;



The LIKE Clause

We can do wildcard matching in a WHERE clause 
using the LIKE operator

SELECT * FROM users WHERE name LIKE '%e%';



The LIMIT/OFFSET Clauses
• We can request the first "n" rows, or the first "n" rows after skipping 

some rows. 

• The WHERE and ORDER BY clauses happen *before* the LIMIT / 
OFFSET are applied.

• The OFFSET starts from row 0

SELECT * FROM users ORDER BY email DESC LIMIT 2;
SELECT * FROM users ORDER BY email OFFSET 1 LIMIT 2;



Counting Rows with SELECT

You can request to receive the count of the rows 
that would be retrieved instead of the rows

SELECT COUNT(*) FROM users;
SELECT COUNT(*) FROM users WHERE email='csev@umich.edu';



SQL Summary

SELECT * FROM users WHERE email='csev@umich.edu';

UPDATE users SET name='Charles' WHERE email='csev@umich.edu';

INSERT INTO users (name, email) VALUES ('Ted', 'ted@umich.edu');

DELETE FROM users WHERE email='ted@umich.edu';

SELECT * FROM users ORDER BY email;

SELECT * FROM users WHERE name LIKE '%e%';

SELECT COUNT(*) FROM users WHERE email='csev@umich.edu'

SELECT * FROM users ORDER BY email OFFSET 1 LIMIT 2;



This is not too exciting (so far)

• Tables pretty much look like big, fast programmable spreadsheets with 
rows, columns, and commands.

• The power comes when we have more than one table and we can 
exploit the relationships between the tables.



Data Types in PostgreSQL



Looking at Data Types

• Text fields (small and large)

• Binary fields (small and large)

• Numeric fields

• AUTO_INCREMENT fields



String Fields

• Understand character sets and are indexable for searching

• CHAR(n) allocates the entire space (faster for small strings where 
length is known)

• VARCHAR(n) allocates a variable amount of space depending on the 
data length (less space)



Text Fields

• Have a character set - paragraphs or HTML pages

- TEXT varying length

• Generally not used with indexing or sorting - and only then limited to 
a prefix



Binary Types (rarely used)

• Character = 8 - 32 bits of information depending on character set

• Byte = 8 bits of information 

- BYTEA(n) up to 255 bytes

• Small Images - data

• Not indexed or sorted



Integer Numbers

Integer numbers are very efficient, take little storage, and are easy to 
process because CPUs can often compare them with a single instruction.

- SMALLINT (-32768, +32768)

- INTEGER (2 Billion)

- BIGINT - (10**18 ish)

https://www.postgresql.org/docs/9.1/datatype-numeric.html



Floating Point Numbers
Floating point numbers can represent a wide range of values, but accuracy 
is limited.

- REAL (32-bit) 10**38 with seven digits of accuracy

- DOUBLE PRECISION (64-bit) 10**308 with 14 digits of accuracy 

- NUMERIC(accuracy, decimal) – Specified digits of accuracy and digits 
after the decimal point

https://www.postgresql.org/docs/11/datatype-numeric.html



Dates

• TIMESTAMP - 'YYYY-MM-DD HH:MM:SS' 
(4713 BC, 294276 AD)

• DATE - 'YYYY-MM-DD'

• TIME - 'HH:MM:SS'

• Built-in PostgreSQL function NOW()

https://www.postgresql.org/docs/11/datatype-datetime.html



https://xkcd.com/607/



Database Keys and Indexes



AUTO_INCREMENT

Often as we make multiple 
tables and need to JOIN them 
together we need an integer  
primary key for each row so we 
can efficiently add a reference 
to a row in some other table as 
a foreign key.

DROP TABLE users;

CREATE TABLE users (
id SERIAL,
name VARCHAR(128), 
email VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

);



PostgreSQL Functions

Many operations in PostgreSQL need to use the built-in functions (like 
NOW() for dates).

https://www.postgresql.org/docs/11/functions.html



Indexes
• As a table gets large (they always do), scanning all the data to find a 

single row becomes very costly

• When drchuck@gmail.com logs into Twitter, they must find my 
password amongst 500 million users

• There are techniques to greatly shorten the scan as long as you create 
data structures and maintain those structures - like shortcuts

• Hashes or Trees are the most common



B-Trees

http://en.wikipedia.org/wiki/B-tree

A B-tree is a tree data structure that keeps data sorted and allows searches, 
sequential access, insertions, and deletions in logarithmic amortized time.  The 
B-tree is optimized for systems that read and write large blocks of data.  It is 

commonly used in databases and file systems.



Hashes

http://en.wikipedia.org/wiki/Hash_function

A hash function is any algorithm or subroutine that 
maps large data sets to smaller data sets, called 

keys. For example, a single integer can serve as an 
index to an array (cf. associative array). The values 
returned by a hash function are called hash values, 

hash codes, hash sums, checksums, or simply hashes.
Hash functions are mostly used to accelerate table 
lookup or data comparison tasks such as finding 

items in a database...



Summary

• SQL allows us to describe the shape of data to be stored and give 
many hints to the database engine as to how we will be accessing or 
using the data.

• SQL is a language that provides us operations to Create, Read, 
Update, and Delete (CRUD) our data in a database.



Acknowledgements / Contributions
These slides are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) as part of www.pg4e.com and made available under a 
Creative Commons Attribution 4.0 License.  Please maintain this 
last slide in all copies of the document to comply with the 
attribution requirements of the license.  If you make a change, feel 
free to add your name and organization to the list of contributors 
on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan 
School of Information

Insert new Contributors and Translators here including names and 
dates

Continue new Contributors and Translators here


