Relational Database Design

Charles Severance
www.pg4e.com

®
http://www.pg4e.com/lectures/02-Database-Design-Many-to-Many.txt @C-EA

Relational Database Design

http://en.wikipedia.org/wiki/Relational _model

Database Design

Database design is an art form of its own with particular skills and
experience.

Our goal is to avoid the really bad mistakes and design clean and
easily understood databases.

Others may performance tune things later.

Database design starts with a picture...

> nonce CHAR(128)
& key_id INT(11)

< created_at TIMESTAMP

© key_id INT(11)
< key_sha256 CHAR(64)
< key_key TEXT
< secret TEXT
<> new_secret TEXT
< user_id INT(11)
<> consumer_profile TEXT
<> new_consumer_profile TEXT
< tool_profile TEXT
<> new_tool_profile TEXT
< json TEXT
< settings TEXT
< settings_url TEXT
< created_at TIMESTAMP
<> updated_at TIMESTAMP

Hi==——

———

+

¢ service_id INT(11)
< service_sha256 CHAR(64)
< sewvice_key TEXT
@ key_id INT(11)
< format VARCHAR(1024)
< json TEXT
< created_at TIMESTAMP

<> updated_at TIMESTAMP

/ user_id INT(11)

% user_sha256 CHAR(64)
< user_key TEXT
@ key_id INT(11)

© membership_id INT(11)
 context_id INT(11)

< profile_id INT(11)
< displayname TEXT

< email TEXT

< locale CHAR(63)

<> subscribe SMALLINT(6)
< json TEXT

< login_at DATETIME

< created_at TIMESTAMP
<> updated_at TIMESTAMP
Indexes

¢ context_id INT(11)

< context_key TEXT
@ key_id INT(11)

< title TEXT

< json TEXT

< settings TEXT

< sefttings_url TEXT

< context_sha256 CHAR(64)

P user_id INT(11)
<> role SMALLINT(6)

< created_at TIMESTAMP |
<> updated_at TIMESTAMP

www.tsugi.org

< created_at TIMESTAMP
<> updated_at TIMESTAMP

¢ result_id INT(11)

@ link_id INT(11)

@ user_id INT(11)

< result_url TEXT

< sourcedid TEXT

< service_id INT(11)

<> grade FLOAT

< note TEXT

< server_grade FLOAT

< json TEXT

< created_at TIMESTAMP
< updated_at TIMESTAMP
< retrieved_at DATETIME
Indexes

< role_override SMALLINT(6)

< [m]

+ link_id INT(11)
% link_sha256 CHAR(64)
& link_key TEXT
& context_id INT(11)
< title TEXT
< json TEXT
< settings TEXT
< sefttings_url TEXT
< created_at TIMESTAMP
% updated_at TIMESTAMP

s o s

P ——
£t

Building a Data Model

® Drawing a picture of the data objects for our application and then
figuring out how to represent the objects and their relationships

® Basic Rule: Don’t put the same string data in twice - use a relationship
instead

® When there is one thing in the “real world” there should only be one
copy of that thing in the database

Track Len Artist Album Genre Rating Count

Hells Bells 5:13 AC/DC Who Made Who Rock ' 5 0.0 .0 1 61
Shake Your Foundations 3:54 AC/DC Who Made Who Rock Yo% Wk W 70
Chase the Ace 3:01 AC/DC Who Made Who Rock 56
For Those About To Rock (We ... 5:54 AC/DC Who Made Who Rock e o 6 0. 61
Dalaman 3:43 Altan Natural Wonders M... New Age 31
Rode Across the Desert 4:10 America Createst Hits Easy Listen... Y% 23
Now You Are Gone 3:08 America GCreatest Hits Easy Listen... Y wd % 18
Tin Man 3:30 America Createst Hits Easy Listen... Y%k 23
Sister Golden Hair 3:22 America Createst Hits Easy Listen... Y% 24
Track 01 4:22 Billy Price Danger Zone Blues/R&B Yo ¥ 26
Track 02 2:45 Billy Price Danger Zone Blues/R&B ' S 0.0 .1 18
Track 03 3:26 Billy Price Danger Zone Blues/R&B o 0.1 22
Track 04 4:17 Billy Price Danger Zone Blues/R&B L o o o . 18
Track 05 3:50 Billy Price Danger Zone Blues /R&B Yo ¥ W 21
War Pigs/Luke's Wall 7:58 Black Sabbath Paranoid Metal ' 0 .0 0.1 25
Paranocid 2:53 Black Sabbath Paranocid Metal w9 W 22
Planet Caravan 4:35 Black Sabbath Paranoid Metal L 2 0.0 0.1 25
Iron Man 5:59 Black Sabbath Paranoid Metal e o 6 & 26
Electric Funeral 4:53 Black Sabbath Paranoid Metal 2 o 6 & 22
Hand of Doom 7:10 Black Sabbath Paranoid Metal Yo% Wk W 23
Rat Salad 2:30 Black Sabbath Paranocid Metal Wk W W 31
Jack the Stripper/Fairies Wear ... 6:14 Black Sabbath Paranoid Metal ' 2 0.0 0.1 24
Bomb Squad (TECH) 3:28 Brent Brent's Album 1
clay techno 4:36 Brent Brent's Album 2
Heavy 3:08 Brent Brent's Album 1
Hi metal man 4:20 Brent Brent's Album 1
Mistro 2:58 Brent Brent's Album 1

For each “piece of info'...

Is the column an object or an

attribute of another object?

® Once we define objects, we need

to define the relationships

between objects.

¥ Hells Bells

™ Shake Your Foundations

¥ Chase the Ace

M For Those About To Rock (We ...
¥ Dulaman

M Rode Across the Desert

¥ Now You Are Gone

R Tia A

5:13
3:54
3:01
5:54
3:43
4:10
3:.08

2.9Nn

AC/DC
AC/DC
AC/DC
AC/DC
Altan
America
America

Ammwimm

Track
Who Made Who Rock
Who Made Who Rock
Who Made Who Rock
Who Made Who Rock
Natural Wonders M... New Age
Createst Hits Easy Listen...

Createst Hits
Fommenme LI HO

Len

Alb

Genre

Artist

...........

Count

' o B 8.1

' OB .1

um

Rating

61
70
56
61
31
23
18

e 3=

Track
Album
Artist
Genre
Rating
Len

Count

Artist

¥ Hells Bells
M Shake Your Foundations
¥ Chase the Ace

™ For Those About To Rock (We ...

¥ Dulaman
M Rode Across the Desert
¥ Now You Are Gone

C2 Tiw AMaw

belongs-to

5:13
3:54
3:01
5:54
3:43
4:10
3:.08

2.29Nn

Album

AC/DC
AC/DC
AC/DC
AC/DC
Altan
America
America

Ammvion

Who Made Who
Who Made Who
Who Made Who
Who Made Who

Natural Wonders M..

Createst Hits
Createst Hits

belongs-to
Genre

Rock ' . .0 . 0.1

Rock 1 2.0 0 6 1

Rock

Rock B .

New Age

Easy Listen... Y%

Easy Listen... %%

Carisl lntmn

Track
Rating
Len

Count

belongs-to

61
70
56
61
31
23
18

e 2=

Artist

™ Hells Bells

M Shake Your Foundations
M Chase the Ace

M For Those About To Rock (We ...

¥ Dulaman

M Rode Across the Desert
™ Now You Are Gone

C2 Tiw AMaw

belongs-to

5:13
3:54
3:01
5:54
3:43
4:10
3:.08

2.29Nn

Album

AC/DC
AC/DC
AC/DC
AC/DC
Altan
America
America

Ammvion

Who Made Who

Who Made Who

Who Made Who

Who Made Who
Natural Wonders M...
Createst Hits
Createst Hits

belongs-to
Genre

Rock ok W

Rock ' 2. 0. 0. 0.1

Rock

Rock ' 5. 0. 0. 0.1

New Age

Easy Listen... Yryra %%

Easy Listen... Y%

Caris |l lntmn A A A A A

Track
Rating

Len

Count

belongs-to

61
70
56
61
31
23
18

e 2=

Key Terminology

Finding our way around....

Three Kinds of Keys

* Primary key - generally an integer auto-
increment field

* Logical key - what the outside world uses
for lookup

* Foreign key - generally an integer key
pointing to a row in another table

Album
album _id
title
artist_id

Primary Key Rules

Best practices:

* Never use your logical key as the primary key.
* Logical keys can and do change, albeit slowly.

* Relationships that are based on matching
string fields are less efficient than integers.

User
user_id
email
password
name
created at
modified at
login_at

Foreign Keys

: : Artist Album
* A foreign key is when a table has a T album id
column containing a key that points artist_id « title
to the primary key of another table. name \ artist_id

* When all primary keys are integers,
then all foreign keys are integers. This
is good - very good.

Normalization
and Foreign Keys

™
4
Vv

K K E E K

J

Hells Bells

Shake Your Foundations

Chase the Ace

For Those About To Rock (We ...
Dulaman

Rode Across the Desert

Now You Are Gone

Tiwm AMmn

We want to keep track of which band is the “creator” of each music track...

AC/DC
AC/DC
AC/DC
AC/DC
Altan
America
merica

P

Who Made Who Rock ' o 0.6 .1
Who Made Who Rock ' 2. 0.0 . 0.1
Who Made Who

Who Made Who ' 0. 0.0 .86 1

Natural Wonders M.N
Createst Hits
Createst Hits

FConmtmnre Llie~

L 2.0 0 & 1
' 2.0 0 & 1

—A A 4 A A

What album does this song “belong to”?

Which album is this song related to!?

61
70
56
61
31
23
18

Database Normalization (3NF)

There is *tons™ of database theory - way too much to understand
without excessive predicate calculus

® Do not replicate data. Instead, reference data. Point at data.

® Use integers for keys and for references.

® Add a special “key” column to each table, which you will make
references to.

http://en.wikipedia.org/wiki/Database_normalization

Integer Reference Pattern

We use integer columns in one music=> SELECT * FROM artist;
table to reference (or look up) id name
rows in another table. e Eamae
1 Led Zeppelin
AC/DC
music=> SELECT * FROM album;
id | title | artist id
R PR
1 | Who Made Who | C 2

2| 1V | 1

Building a Physical Data Schema

Track

Artist :
belongs-to Rating

Len
Album Count
belongs-to
belongs-to
Genre
™ Hells Bells 5:13 AC/DC Who Made Who Rock ok W W 61
™ Shake Your Foundations 3:54 AC/DC Who Made Who Rock ' B 0. 0.0 ¢ 70
¥ Chase the Ace 3:01 AC/DC Who Made Who Rock 56
™ For Those About To Rock (We ... 5:54 AC/DC Who Made Who Rock ' B B 0. 0.1 61
¥ Dulaman 3:43 Altan Natural Wonders M... New Age 31
M Rode Across the Desert 4:10 America Createst Hits Easy Listen... YWy wh % 23

¥ Now You Are Gone 3:08 America Greatest Hits Easy Listen... YWyrrh % 18

C# Tiw AMaw 2.29Nn Avnmwlomm FConmtnre Liies~ Carisl lntmin A A A A A e -

belongs-to Track

Album | — Title

Rating
Len Track
Count
title
Table rating
Primary key
Logical key
Foreign key count

album_id

Artist

Name

Table
Primary key
Logical key
Foreign key

Naming the Foreign key
artist_id is a convention

Track

title

rating

count

album_id

genre_id

Creating our Music Database

sudo -u postgres psqgl postgres

postgres=# CREATE DATABASE music
WITH OWNER 'pg4e' ENCODING 'UTF8';

CREATE DATABASE
postgres=#

CREATE TABLE artist (
id SERIAL,
name VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

) ;

CREATE TABLE album (
id SERIAL,
title VARCHAR(128) UNIQUE,
artist id INTEGER REFERENCES artist(id) ON DELETE CASCADE,
PRIMARY KEY(id)

) ;

CREATE TABLE genre (
id SERIAL,
name VARCHAR(128) UNIQUE,
PRIMARY KEY(1id)

) ;

CREATE TABLE track (
id SERIAL,
title VARCHAR(128),
len INTEGER,
rating INTEGER,
count INTEGER,
album_id INTEGER REFERENCES genre(id) ON DELETE CASCADE,
genre id INTEGER REFERENCES album(id) ON DELETE CASCADE,
UNIQUE(title, album id),
PRIMARY KEY(id)

music=> \d track
Table "public.track"

Column | Type | Modifiers
__________ o
id | integer | not null default nextval('track id seq'::regclass)
title | character varying(128) |
len | integer |
rating | integer |
count | integer |
album id | integer |
genre_id | integer |
Indexes:

"track pkey" PRIMARY KEY, btree (id)
"track title album id key" UNIQUE CONSTRAINT, btree (title, album id)
Foreign-key constraints:
"track album id fkey" FOREIGN KEY (album id) REFERENCES album(id) ON DELETE CASCADE
"track genre id fkey" FOREIGN KEY (genre id) REFERENCES genre(id) ON DELETE CASCADE

music=>

music=> INSERT INTO artist (name) VALUES ('Led Zeppelin');
INSERT 0 1

music=> INSERT INTO artist (name) VALUES ('AC/DC');
INSERT 0 1

music=> SELECT * FROM artist;

id | name
+
1 | Led Zeppelin
2 | Aac/pcC

(2 rows)

music=>

music=> INSERT INTO album (title, artist id) VALUES ('Who Made Who', 2);
INSERT 0 1

music=> INSERT INTO album (title, artist id) VALUES ('IV', 1);
INSERT 0 1

music=> SELECT * FROM album;

id | title | artist id
+ +

1 | Who Made Who | 2
2| 1v | 1

(2 rows)

music=> INSERT INTO genre (name) VALUES ('Rock');
INSERT 0 1

music=> INSERT INTO genre (name) VALUES ('Metal');
INSERT 0 1
music=> SELECT * FROM genre;

id | name

+
1 | Rock
2 | Metal

(2 rows)

music=> INSERT INTO track (title, rating, len, count, album id,

music-> VALUES ('Black Dog', 5, 297, 0, 2, 1) ;
INSERT 0 1

music=> INSERT INTO track (title, rating, len, count, album id,

music-> VALUES ('Stairway', 5, 482, 0, 2, 1) ;
INSERT 0 1

music=> INSERT INTO track (title, rating, len, count, album id,

music-> VALUES ('About to Rock', 5, 313, 0, 1, 2) ;
INSERT 0 1

music=> INSERT INTO track (title, rating, len, count, album id,

music-> VALUES ('Who Made Who', 5, 207, 0, 1, 2) ;
INSERT 0 1
music=> SELECT * FROM track;

id | title | len | rating | count | album_id | genre id
+ e + + + -
1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | who Made Who | 207 | 5 | 0 | 1 | 2

(4 rows)

genre_ id)

genre id)

genre id)

genre_ id)

music=> SELECT * FROM track;

id | title | len | rating | count | album id | genre id
+ +---——+ + + +
1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Wwho Made Who | 207 | 5 | 0 | 1 | 2 music=> SELECT * FROM genre;
id | name
____+ _______
1 | Rock
mus1c => SELECT * FROM album; 2 | Metal
id title artist id
1 | Who Made Who | 2
2| 1v | 1

music=> SELECT * FROM artist;

\ id | name

| Led Zeppelin
We Have Relationships!

1
2 | Ac/DcC

Using Join Across Tables

http://en.wikipedia.org/wiki/Join_(SQL)

Relational Power

® By removing the replicated data and replacing it with references to a
single copy of each bit of data, we build a “web” of information that
the relational database can read through very quickly - even for very
large amounts of data.

® Often when you want some data it comes from a number of tables
linked by these foreign keys.

The JOIN Operation

® The JOIN operation links across several tables as part of a SELECT
operation.

® You must tell the JOIN how to use the keys that make the
connection between the tables using an ON clause.

music=> SELECT * FROM album; music=> SELECT * FROM artist;

id | title | artist id id | name

+ + +

1 | Who Made Who | 2 1 | Led Zeppelin
2| 1v | T~ | AC/DC

music=> SELECT album.title, artist.name

music-> FROM album JOIN artist
music-> ON album.artist id = artist.id;
title | name
______________ e
Who Made Who | AC/DC
IV | Led Zeppelin What we want to see

The tables that hold the data
How the tables are linked

music=> SELECT * FROM album; music=> SELECT * FROM artist;

id | title | artist id id | name

+ + +

1 | Who Made Who | 2 1 | Led Zeppelin
2| 1v | T~ | AC/DC

music=> SELECT album.title, album.artist id, artist.id, artist.name

music-> FROM album INNER JOIN artist ON album.artist id = artist.id;
title | artist id | id | name

————————— + +--——+ e

Who Made Who | 2= 2 | AC/DC

v | 1= 1 | Led Zepplin

music=> SELECT track.title, track.genre id, genre.id, genre.name

music-> FROM track CROSS JOIN genre;
title | genre id | id | name
+ -t

Black Dog | 1 | 1 | Rock
Stairway | 1 | 1 | Rock
About to Rock | 2 | 1 | Rock
Who Made Who | 2 | 1 | Rock
Black Dog | 1 | 2 | Metal
Stairway | 1 | 2 | Metal
About to Rock | 2 | 2 | Metal
Who Made Who | 2 | 2 | Metal

music=> SELECT * FROM track;

id | title | len | rating | count | album id | genre id
———t et + + +
1 | Black Dog | 297 | 5 | 0 | 2 | 1 -
2 | stairway | 482 | 5 | 0 | 2 | 1 music=> SELECT * FROM genre;
3 | About to Rock | 313 | 5 | 0 | 1| id | name
4 | Who Made Who | 207 | 5 | 0 | 1| ST
1 | Rock
2 | Metal

music=> SELECT track.title, genre.name

music-> FROM track JOIN genre
music-> ON track.genre id = genre.id;
title | name
_______________ o =
Black Dog Rock

About to Rock

|
Stairway | Rock
|
Who Made Who |

It Can Get Complex...

music=> SELECT track.title, artist.name, album.title, genre.name
music-> FROM track

music-> JOIN genre ON track.genre id = genre.id
music-> JOIN album ON track.album id = album.id
music-> JOIN artist ON album.artist id = artist.id;
title | name | title | genre
——————————————— LSy Sy BRSPS SRR
Black Dog | Led Zeppelin | IV | Rock
Stairway | Led Zeppelin | IV | Rock
About to Rock | AC/DC | Who Made Who | Metal
Who Made Who | AC/DC | Who Made Who | Metal

M Hells Bells 5:13 AC/DC Who Made Who Rock L 0. 0.0 5 1 61

 Shake Your Foundations 3:54 AC/DC Who Made Who Rock ' o B 70

M Chase the Ace 3:01 AC/DC Who Made Who Rock 56

M For Those About To Rock (We ... 5:54 AC/DC Who Made Who Rock i Wk W 61

™ Dulaman 3:43 Altan Natural Wonders M... New Age 31

@ Rode Across the Desert 4:10 America GCreatest Hits Easy Listen... Y% h % 23

™ Now You Are Gone 3:08 America Createst Hits Easy Listen... Ywra %% 18

M Tin Man 3:30 America Createst Hits Easy Listen... Y%k % 23

M Sister Colden Hair 3:22 America Createst Hits Easy Listen... YWwara %% 24

M Track O1 4:22 Billy Price Danger Zone Blues/R&B kAN 26

M Track 02 2:45 Billy Price Danger Zone Blues/R&B L 0. 0.0 6 1 18

M Track 03 3:26 Billy Price Danger Zone Blues/R&B i Wk 22

M Track 04 4:17 Billy Price Danger Zone Blues/R&B L 0. 0.0 6 1 18

lg Tl’ack 05 2-CN Billy Drirg Dannaor Zang Bluoc iDOR [S G G G 21

© War Pigs /Luke's Wall title | name title | name
™ Paranoid

Planet Caravan |~~~ T T TTTT—— t-——————— +t-———— -
N Iron Man Black Dog | Led Zeppelin | IV | Rock
M Electric Funeral . .

Hand of Doom Stairway | Led Zeppelin | IV | Rock
R About to Rock | AC/DC | Who Made Who | Metal
™ Jack the Stripper/Fair

@ Bomb Squad (TEcH) | Who Made Who | AC/DC | Who Made Who | Metal
™ clay techno

M Heavy

M Hi metal man 4:20 Brent Brent's Album 1

™ Mistro 2:58 Brent Brent's Album 1

ON DELETE CASCADE

Child
music=> SELECT * FROM track;
id | title | len | rating | count | album id | genre id
——t -t + + +
1 | Black Dog | 297 | 5 | 0 | 2 | 1 .
2 | Stairway | 482 | 5 | 0 | 2 | 1 music=> SELECT * FROM genre;
3 | About to Rock | 313 | 5 | 0 | 1 | 2 id | name
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

____+ _______
\1 | Rock
2 | Metal
We are telling Postgres to Parent
"clean up" broken references

DELETE FROM Genre WHERE name = 'Metal’

ON DELETE CASCADE

music=> SELECT * FROM track;

id | title | len | rating | count | album id | genre_ id
+ o + + + --
1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1| 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

(4 rows)

music=> DELETE FROM genre WHERE name='Metal';

DELETE 1
music=> SELECT * FROM track;
id | title | len | rating | count | album id | genre id
+ e e + +
1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | stairway | 482 | 5 | 0 | 2 | 1

(2 rows)

ON DELETE Choices

® Default / RESTRICT — Don’t allow changes that break the constraint

® CASCADE - Adjust child rows by removing or updating to maintain
consistency

® SET NULL - Set the foreign key columns in the child rows to null

http://stackoverflow.com/questions/|027656/what-is-mysqls-default-on-delete-behavior

Many-to-Many Relationships

o [a

% nonce CHAR(128) / user_id INT(11) ' membership_id INT(11)
& key_id INT(11) % user_sha256 CHAR(64) | context_id INT(11)
< created_at TIMESTAMP < user_key TEXT & user_id INT(11)
& key_id INT(11) H < role SMALLINT(6)
& profile_id INT(11) .] O role_override SMALLINT(6)
< displayname TEXT < created_at TIMESTAMP
=g email TEXT <> updated_at TIMESTAMP
! key_id INT(11) | <> locale CHAR(63)
O key_shal56 CHARE4) : < subscribe SMALLINT(6)
& key_key TEXT i & json TEXT - ————— 4 + link_id INT(11)
< secret TEXT I | togin_at DATETME : < link_sha256 CHAR(64)
Onew_secret TEXT = created_at TIMESTAMP I fink_key TEXT
Ouser_id INT(11) updated_at TIMESTAMP I @ context_id INT(11)
<> consumer_profile TEXT | < title TEXT
< new_consumer_profile TEXT _ | EENEEENEENEEERE =i son TEXT u]
> tool_profile TEXT : : & settings TEXT
O new_tool_prafile TEXT W : I < settings_url TEXT
& json TEXT H=—— > context_sha256 CHAR(64) | : % created_at TIMESTAMP
< settings TEXT | 2 context_key TEXT | | < updated_at TIMESTAMP
< seftings_url TEXT I & key_id INT(11) ; I _
& created_at TIMESTAMP | . ttle TEXT | I
- vpdated st TMESTAMP =S S sonex : I result_id INT(11) :
_ < settings TEXT | || @link_id INT(11) |
£ < settings_url TEXT “____T ______ T | % useriaINT(11) I
 created_at TIMESTAMP | 5 result_url TEXT :
+ sewice_id INT(11) © updated_at TMESTAMP P S sourcedia TexT I
% service_sha256 CHAR(64) < service_id INT(11) :
< sewvice_key TEXT <> grade FLOAT Bl—— — — — 4
@ key_id INT(11) < note TEXT
< format VARCHAR(1024) PO T IO TOTTOTOT 'i ______________ - < sewver_grade FLOAT
< json TEXT < json TEXT
< created_at TIMESTAMP <» created_at TIMESTAMP
% updated_at TIMESTAMP % updated_at TIMESTAMP
< retrieved_at DATETIME

% www.tsugi.org e

Review:
belongs-to Track One to Many
Album E —————— Title
One Many Rating
Len Track
Count
Table :
Primary key fee
Logical key One rating
Foreign key

Many

count

album_id

https://en.wikipedia.org/wiki/One-to-many_(data_model)

music=> SELECT * FROM track;

id | title | len | rating | count | album id | genrecid
—t -t + + + ne Many
1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1 music=> SELECT * FROM genre;
3 | About to Rock | 313 | 5 | 0 | 1| 2 id | name
4 | Who Made Who | 207 | 5 | 0 | 1 |

https://en.wikipedia.org/wiki/One-to-many_(data_model)

Many to Many

 Sometimes we need to model a Books > < Authors

relationship that is many to many.

* We need to add a “connection”
table with two foreign keys. Junction Table

* There is usually no separate Books ——€] Authors
primary key. N

member-of

User
title Many Many email
name

student

course

member
Many

student_id email

Many One

title One course_id

role

https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Start with a Fresh Database

CREATE TABLE student (
id SERIAL,
name VARCHAR(128),
email VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

) ;

CREATE TABLE course (
id SERIAL,
title VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

) ;

course student

member

student_id

One email

title

course_id

role

CREATE TABLE member (
student id INTEGER REFERENCES student(id) ON DELETE CASCADE,
course id INTEGER REFERENCES course(id) ON DELETE CASCADE,
role INTEGER,
PRIMARY KEY (student id, course id)

) ;

Insert Users and Courses

music=> INSERT INTO student (name, email) VALUES ('Jane', 'jane@tsugi.org');
music=> INSERT INTO student (name, email) VALUES ('Ed', 'ed@tsugi.org');
music=> INSERT INTO student (name, email) VALUES ('Sue', 'sue@tsugi.org');
music=> SELECT * FROM student;

id | name | email

1 | Jane | jane@tsugi.org
2 | Ed | ed@tsugi.org
3 | Sue | sue@tsugi.org

music=> INSERT INTO course (title) VALUES ('Python');
music=> INSERT INTO course (title) VALUES ('SQL');
music=> INSERT INTO course (title) VALUES ('PHP');
music=> SELECT * FROM COURSE;

id | title

1 | Python
2 | soL
3 | PHP

Insert Memberships

music=> SELECT * FROM student;
id | name |

INSERT
INSERT
INSERT

INSERT
INSERT

INSERT
INSERT

INTO
INTO
INTO

INTO
INTO

INTO
INTO

email

jane@tsugi.org
ed@tsugi.org
sue@tsugi.org

member
member
member

member
member

member
member

(student id,
(student id,
(student id,

(student id,
(student id,

(student id,
(student id,

music=> SELECT * FROM course;

id |

course 1id,
course id,
course id,

course 1id,
course 1id,

course_ id,
course 1id,

title

role)
role)
role)

role)
role)

role)
role)

VALUES
VALUES
VALUES

VALUES
VALUES

VALUES
VALUES

(2,
(3,

~e e

o
A d

music=> SELECT * FROM student; music=

id | name | email id |
S - e +-
1 | Jane | jane@tsugi.org 1 |
2 | Ed | ed@tsugi.org 2 |
3 | Sue | sue@tsugi.org 3 |

music=> SELECT * FROM member;
student id | course_id | role

> SELECT * FROM course;
title

music=> SELECT student.name, member.role, course.title
music-> FROM student
music-> JOIN member ON member.student id = student.id
music-> JOIN course ON member.course id = course. id
music-> ORDER BY course.title, member.role DESC,
student.name;

name | role | title

4t
Ed | 1 | PHP
Sue | 0 | PHP
Jane | 1 | Python
Ed | 0 | Python
Sue | 0 | Python
Ed | 1 | soL
Jane | 0 | soL
S

m

! id INT(11) ."‘T * user_id INT(11)
' course
ey o
< title VARCHAR(128)
<> name VARCHAR(128)

Indexes < role INT(11)

https://www.mysql.com/products/workbench/

<> nonce CHAR(128)
< key_id INT(11)

< created_at TIMESTAMP

© key_id INT(11)

% key_sha256 CHAR(64)
% key_key TEXT

< secret TEXT

<> new_secret TEXT

< user_id INT(11)

<> consumer_profile TEXT
<> new_consumer_profile TEXT
< tool_profile TEXT

<> new_tool_profile TEXT
< json TEXT

< sefttings TEXT

< settings_url TEXT

< created_at TIMESTAMP
< updated_at TIMESTAMP

+

¢ service_id INT(11)

< service_sha256 CHAR(64)
< sewvice_key TEXT

& key_id INT(11)

< format VARCHAR(1024)
< json TEXT

< created_at TIMESTAMP

/ user_id INT(11)
<> user_sha256 CHAR(64)

+ membership_id INT(11)
 context_id INT(11)

< user_key TEXT

P user_id INT(11)
<> role SMALLINT(6)

@ key_id INT(11)
< profile_id INT(11) , < role_override SMALLINT(6)
< displayname TEXT < created_at TIMESTAMP
 —i © email TEXT % updated_at TIMESTAMP
| & locale GHAR(63)
: < subscribe SMALLINT(6)
| SjonTEXT 000 (T T T o~ : + link_id INT(11)
: login_at DATETIME i & link_sha256 CHAR(64)
rH-— & created_at TIMESTAMP | % link_key TEXT
 updated_at TIMESTAMP I & context_id INT(11)
I > title TEXT
I O T TR T =L con TEXT
: : < settings TEXT
/ context_id INT(11) : I < settings_url TEXT
== % context_sha256 CHAR(64) | : % created_at TIMESTAMP
! % context_key TEXT ! I % updated_at TIMESTAMP
: & key_id INT(11) | :
I < title TEXT I I
TS okenTexT : I + result_id INT(11) :
< settings TEXT I || link_id INT(11) |
O settings_url TEXT H-____T ______ T | user_id INT(11) |
< created_at TIMESTAMP | 5 result_url TEXT I
 updated_at TIMESTAMP bl o e e =1L courcedid TEXT I
& sewvice_id INT(11) :
< grade FLOAT S ———— J
<> note TEXT
O TOT T TOT T T O T < sever_grade FLOAT
B N EENLERaLERGEE —I< . json TEXT

< updated_at TIMESTAMP
Indexes

www.tsugi.org

< created_at TIMESTAMP
<> updated_at TIMESTAMP
< retrieved_at DATETIME

Complexity Enables Speed

® Complexity makes speed possible and allows you to get very fast
results as the data size grows.

® By normalizing the data and linking it with integer keys, the overall
amount of data which the relational database must scan is far lower
than if the data were simply flattened out.

® It might seem like a tradeoff - spend some time designing your
database so it continues to be fast when your application is a success.

Summary

Relational databases allow us to scale to very large amounts of data.

The key is to have one copy of any data element and use relations and
joins to link the data to multiple places.

This greatly reduces the amount of data that must be scanned when
doing complex operations across large amounts of data.

Database and SQL design is a bit of an art form.

Acknowledgements / Contributions 9 _®

These slides are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) as part of www.pg4e.com and made available under a
Creative Commons Attribution 4.0 License. Please maintain this
last slide in all copies of the document to comply with the
attribution requirements of the license. If you make a change, feel
free to add your name and organization to the list of contributors
on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

Insert new Contributors and Translators here including names and
dates

Continue new Contributors and Translators here

