
Relational Database Design
Charles Severance

www.pg4e.com

http://www.pg4e.com/lectures/02-Database-Design-Many-to-Many.txt

Relational Database Design

http://en.wikipedia.org/wiki/Relational_model

Database Design
• Database design is an art form of its own with particular skills and

experience.

• Our goal is to avoid the really bad mistakes and design clean and
easily understood databases.

• Others may performance tune things later.

• Database design starts with a picture...

www.tsugi.org

www.sakaiproject.org

Building a Data Model
• Drawing a picture of the data objects for our application and then

figuring out how to represent the objects and their relationships

• Basic Rule: Don’t put the same string data in twice - use a relationship
instead

• When there is one thing in the “real world” there should only be one
copy of that thing in the database

Track Len Artist Album Genre Rating Count

For each “piece of info”...
• Is the column an object or an

attribute of another object?

• Once we define objects, we need
to define the relationships
between objects. Track

Len

Artist

Album

Genre

Rating

Count

Track

Album

Artist

Genre

Len

Rating

Count

belongs-to

belongs-to

belongs-to

Artist

Album

Genre

Track

Len

Rating

Count

belongs-to

belongs-to

belongs-to

Artist

Album

Genre

Track

Len

Rating

Count

Key Terminology
Finding our way around....

Three Kinds of Keys

• Primary key - generally an integer auto-
increment field

• Logical key - what the outside world uses
for lookup

• Foreign key - generally an integer key
pointing to a row in another table

Album
album_id
title
artist_id
...

Primary Key Rules

Best practices:

• Never use your logical key as the primary key.

• Logical keys can and do change, albeit slowly.

• Relationships that are based on matching
string fields are less efficient than integers.

User
user_id
email
password
name
created_at
modified_at
login_at

Foreign Keys

• A foreign key is when a table has a
column containing a key that points
to the primary key of another table.

• When all primary keys are integers,
then all foreign keys are integers. This
is good - very good.

Artist
artist_id
name
...

Album
album_ id
title
artist_id
...

Normalization
and Foreign Keys

We want to keep track of which band is the “creator” of each music track...
What album does this song “belong to”?

Which album is this song related to?

Database Normalization (3NF)
There is *tons* of database theory - way too much to understand
without excessive predicate calculus

• Do not replicate data. Instead, reference data. Point at data.

• Use integers for keys and for references.

• Add a special “key” column to each table, which you will make
references to.

http://en.wikipedia.org/wiki/Database_normalization

music=> SELECT * FROM album;
id | title | artist_id
----+--------------+-----------

1 | Who Made Who | 2
 2 | IV | 1

Integer Reference Pattern

We use integer columns in one
table to reference (or look up)

rows in another table.

music=> SELECT * FROM artist;
id | name
----+-------------

1 | Led Zeppelin
2 | AC/DC

Building a Physical Data Schema

Track

Len

Artist

Album

Genre

Rating

Countbelongs-to

belongs-to

belongs-to

Album

belongs-to

Album

id

title

Track

id

title

rating

len

count

album_id

Table
Primary key
Logical key
Foreign key

Track

Len
Rating

Count

Title

Album

id

title

Track

id

title

rating

len

count

album_id

Table
Primary key
Logical key
Foreign key

Artist

id

name

artist_id

Genre

id

name

genre_id

Naming the Foreign key
artist_id is a convention

Creating our Music Database

sudo -u postgres psql postgres

postgres=# CREATE DATABASE music
WITH OWNER 'pg4e' ENCODING 'UTF8';

CREATE DATABASE
postgres=#

CREATE TABLE artist (
id SERIAL,
name VARCHAR(128) UNIQUE,
PRIMARY_KEY(id)

);

CREATE TABLE album (
id SERIAL,
title VARCHAR(128) UNIQUE,
artist_id INTEGER REFERENCES artist(id) ON DELETE CASCADE,
PRIMARY KEY(id)

);

CREATE TABLE genre (
id SERIAL,
name VARCHAR(128) UNIQUE,
PRIMARY_KEY(id)

);

CREATE TABLE track (
id SERIAL,
title VARCHAR(128),
len INTEGER,
rating INTEGER,
count INTEGER,
album_id INTEGER REFERENCES genre(id) ON DELETE CASCADE,
genre_id INTEGER REFERENCES album(id) ON DELETE CASCADE,
UNIQUE(title, album_id),
PRIMARY KEY(id)

);

music=> \d track
Table "public.track"

Column | Type | Modifiers
----------+------------------------+--
id | integer | not null default nextval('track_id_seq'::regclass)
title | character varying(128) |
len | integer |
rating | integer |
count | integer |
album_id | integer |
genre_id | integer |

Indexes:
"track_pkey" PRIMARY KEY, btree (id)
"track_title_album_id_key" UNIQUE CONSTRAINT, btree (title, album_id)

Foreign-key constraints:
"track_album_id_fkey" FOREIGN KEY (album_id) REFERENCES album(id) ON DELETE CASCADE
"track_genre_id_fkey" FOREIGN KEY (genre_id) REFERENCES genre(id) ON DELETE CASCADE

music=>

music=> INSERT INTO artist (name) VALUES ('Led Zeppelin');
INSERT 0 1
music=> INSERT INTO artist (name) VALUES ('AC/DC');
INSERT 0 1
music=> SELECT * FROM artist;
id | name
----+-------------

1 | Led Zeppelin
2 | AC/DC

(2 rows)

music=>

music=> INSERT INTO album (title, artist_id) VALUES ('Who Made Who', 2);
INSERT 0 1
music=> INSERT INTO album (title, artist_id) VALUES ('IV', 1);
INSERT 0 1
music=> SELECT * FROM album;
id | title | artist_id
----+--------------+-----------

1 | Who Made Who | 2
 2 | IV | 1
(2 rows)

music=> INSERT INTO genre (name) VALUES ('Rock');
INSERT 0 1
music=> INSERT INTO genre (name) VALUES ('Metal');
INSERT 0 1
music=> SELECT * FROM genre;
id | name
----+-------

1 | Rock
2 | Metal

(2 rows)

music=> INSERT INTO track (title, rating, len, count, album_id, genre_id)
music-> VALUES ('Black Dog', 5, 297, 0, 2, 1) ;
INSERT 0 1
music=> INSERT INTO track (title, rating, len, count, album_id, genre_id)
music-> VALUES ('Stairway', 5, 482, 0, 2, 1) ;
INSERT 0 1
music=> INSERT INTO track (title, rating, len, count, album_id, genre_id)
music-> VALUES ('About to Rock', 5, 313, 0, 1, 2) ;
INSERT 0 1
music=> INSERT INTO track (title, rating, len, count, album_id, genre_id)
music-> VALUES ('Who Made Who', 5, 207, 0, 1, 2) ;
INSERT 0 1
music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

(4 rows)

We Have Relationships!

music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2 music=> SELECT * FROM genre;

id | name
----+-------

1 | Rock
2 | Metalmusic=> SELECT * FROM album;

id | title | artist_id
----+--------------+-----------

1 | Who Made Who | 2
 2 | IV | 1

music=> SELECT * FROM artist;
id | name
----+-------------

1 | Led Zeppelin
2 | AC/DC

Using Join Across Tables

http://en.wikipedia.org/wiki/Join_(SQL)

Relational Power
• By removing the replicated data and replacing it with references to a

single copy of each bit of data, we build a “web” of information that
the relational database can read through very quickly - even for very
large amounts of data.

• Often when you want some data it comes from a number of tables
linked by these foreign keys.

The JOIN Operation

• The JOIN operation links across several tables as part of a SELECT
operation.

• You must tell the JOIN how to use the keys that make the
connection between the tables using an ON clause.

music=> SELECT * FROM artist;
id | name
----+-------------
1 | Led Zeppelin
2 | AC/DC

music=> SELECT * FROM album;
id | title | artist_id
----+--------------+-----------
1 | Who Made Who | 2

 2 | IV | 1

music=> SELECT album.title, artist.name
music-> FROM album JOIN artist
music-> ON album.artist_id = artist.id;

title | name
--------------+-------------
Who Made Who | AC/DC
IV | Led Zeppelin What we want to see

The tables that hold the data
How the tables are linked

music=> SELECT * FROM artist;
id | name
----+-------------
1 | Led Zeppelin
2 | AC/DC

music=> SELECT * FROM album;
id | title | artist_id
----+--------------+-----------
1 | Who Made Who | 2

 2 | IV | 1

music=> SELECT album.title, album.artist_id, artist.id, artist.name
music-> FROM album INNER JOIN artist ON album.artist_id = artist.id;

title | artist_id | id | name
--------------+-----------+----+-------------
Who Made Who | 2 | 2 | AC/DC
IV | 1 | 1 | Led Zepplin

music=> SELECT track.title, track.genre_id, genre.id, genre.name
music-> FROM track CROSS JOIN genre;

title | genre_id | id | name
---------------+----------+----+-------
Black Dog | 1 | 1 | Rock
Stairway | 1 | 1 | Rock
About to Rock | 2 | 1 | Rock
Who Made Who | 2 | 1 | Rock
Black Dog | 1 | 2 | Metal
Stairway | 1 | 2 | Metal
About to Rock | 2 | 2 | Metal
Who Made Who | 2 | 2 | Metal

music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

music=> SELECT * FROM genre;
id | name
----+-------

1 | Rock
2 | Metal

music=> SELECT track.title, genre.name
music-> FROM track JOIN genre
music-> ON track.genre_id = genre.id;

title | name
---------------+-------
Black Dog | Rock
Stairway | Rock
About to Rock | Metal
Who Made Who | Metal

It Can Get Complex...
music=> SELECT track.title, artist.name, album.title, genre.name
music-> FROM track
music-> JOIN genre ON track.genre_id = genre.id
music-> JOIN album ON track.album_id = album.id
music-> JOIN artist ON album.artist_id = artist.id;

title | name | title | genre
---------------+--------------+--------------+-------
Black Dog | Led Zeppelin | IV | Rock
Stairway | Led Zeppelin | IV | Rock
About to Rock | AC/DC | Who Made Who | Metal
Who Made Who | AC/DC | Who Made Who | Metal

title | name | title | name
---------------+--------------+--------------+-------
Black Dog | Led Zeppelin | IV | Rock
Stairway | Led Zeppelin | IV | Rock
About to Rock | AC/DC | Who Made Who | Metal
Who Made Who | AC/DC | Who Made Who | Metal

music=> SELECT * FROM genre;
id | name
----+-------

1 | Rock
2 | Metal

ON DELETE CASCADE

We are telling Postgres to
"clean up" broken references

DELETE FROM Genre WHERE name = 'Metal'

Parent

Child
music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

ON DELETE CASCADE
music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

(4 rows)

music=> DELETE FROM genre WHERE name='Metal';
DELETE 1
music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+-----------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1

(2 rows)

ON DELETE Choices

• Default / RESTRICT – Don’t allow changes that break the constraint

• CASCADE – Adjust child rows by removing or updating to maintain
consistency

• SET NULL – Set the foreign key columns in the child rows to null

http://stackoverflow.com/questions/1027656/what-is-mysqls-default-on-delete-behavior

Many-to-Many Relationships

www.tsugi.org

Album

belongs-to

Album

id

title

Track

id

title

rating

len

count

album_id

Table
Primary key
Logical key
Foreign key

Track

Len
Rating

Count

Title

Many

One

https://en.wikipedia.org/wiki/One-to-many_(data_model)

Review:
One to Many

ManyOne

ManyOne

https://en.wikipedia.org/wiki/One-to-many_(data_model)

music=> SELECT * FROM track;
id | title | len | rating | count | album_id | genre_id
----+---------------+-----+--------+-------+----------+----------

1 | Black Dog | 297 | 5 | 0 | 2 | 1
2 | Stairway | 482 | 5 | 0 | 2 | 1
3 | About to Rock | 313 | 5 | 0 | 1 | 2
4 | Who Made Who | 207 | 5 | 0 | 1 | 2

music=> SELECT * FROM genre;
id | name
----+-------

1 | Rock
2 | Metal

Many to Many

• Sometimes we need to model a
relationship that is many to many.

• We need to add a “connection”
table with two foreign keys.

• There is usually no separate
primary key.

Course
title

member-of

member

student_id

course_id

student

id

email

User

name

Many One

ManyMany

course

id

title One

Many

role
name

email

https://en.wikipedia.org/wiki/Many-to-many_(data_model)

Start with a Fresh Database
CREATE TABLE student (

id SERIAL,
name VARCHAR(128),
email VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

) ;

CREATE TABLE course (

id SERIAL,
title VARCHAR(128) UNIQUE,
PRIMARY KEY(id)

) ;

CREATE TABLE member (
student_id INTEGER REFERENCES student(id) ON DELETE CASCADE,
course_id INTEGER REFERENCES course(id) ON DELETE CASCADE,
role INTEGER,
PRIMARY KEY (student_id, course_id)

) ;

member

student_id

course_id

student

id

emailMany
One

course

id

title One

Many

role name

Insert Users and Courses
music=> INSERT INTO student (name, email) VALUES ('Jane', 'jane@tsugi.org');
music=> INSERT INTO student (name, email) VALUES ('Ed', 'ed@tsugi.org');
music=> INSERT INTO student (name, email) VALUES ('Sue', 'sue@tsugi.org');
music=> SELECT * FROM student;
id | name | email

----+------+----------------
1 | Jane | jane@tsugi.org
2 | Ed | ed@tsugi.org
3 | Sue | sue@tsugi.org

music=> INSERT INTO course (title) VALUES ('Python');
music=> INSERT INTO course (title) VALUES ('SQL');
music=> INSERT INTO course (title) VALUES ('PHP');
music=> SELECT * FROM COURSE;
id | title

----+--------
1 | Python
2 | SQL
3 | PHP

Insert Memberships

INSERT INTO member (student_id, course_id, role) VALUES (1, 1, 1);
INSERT INTO member (student_id, course_id, role) VALUES (2, 1, 0);
INSERT INTO member (student_id, course_id, role) VALUES (3, 1, 0);

INSERT INTO member (student_id, course_id, role) VALUES (1, 2, 0);
INSERT INTO member (student_id, course_id, role) VALUES (2, 2, 1);

INSERT INTO member (student_id, course_id, role) VALUES (2, 3, 1);
INSERT INTO member (student_id, course_id, role) VALUES (3, 3, 0);

music=> SELECT * FROM student;
id | name | email

----+------+----------------
1 | Jane | jane@tsugi.org
2 | Ed | ed@tsugi.org
3 | Sue | sue@tsugi.org

music=> SELECT * FROM course;
id | title

----+--------
1 | Python
2 | SQL
3 | PHP

music=> SELECT * FROM student;
id | name | email

----+------+----------------
1 | Jane | jane@tsugi.org
2 | Ed | ed@tsugi.org
3 | Sue | sue@tsugi.org

music=> SELECT * FROM course;
id | title

----+--------
1 | Python
2 | SQL
3 | PHP

music=> SELECT * FROM member;
student_id | course_id | role

------------+-----------+------
1 | 1 | 1
2 | 1 | 0
3 | 1 | 0
1 | 2 | 0
2 | 2 | 1
2 | 3 | 1
3 | 3 | 0

music=> SELECT student.name, member.role, course.title
music-> FROM student
music-> JOIN member ON member.student_id = student.id
music-> JOIN course ON member.course_id = course. id
music-> ORDER BY course.title, member.role DESC,
student.name;
name | role | title
------+------+--------
Ed | 1 | PHP
Sue | 0 | PHP
Jane | 1 | Python
Ed | 0 | Python
Sue | 0 | Python
Ed | 1 | SQL
Jane | 0 | SQL

(7 rows)

https://www.mysql.com/products/workbench/

www.tsugi.org

Complexity Enables Speed

• Complexity makes speed possible and allows you to get very fast
results as the data size grows.

• By normalizing the data and linking it with integer keys, the overall
amount of data which the relational database must scan is far lower
than if the data were simply flattened out.

• It might seem like a tradeoff - spend some time designing your
database so it continues to be fast when your application is a success.

Summary

• Relational databases allow us to scale to very large amounts of data.

• The key is to have one copy of any data element and use relations and
joins to link the data to multiple places.

• This greatly reduces the amount of data that must be scanned when
doing complex operations across large amounts of data.

• Database and SQL design is a bit of an art form.

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) as part of www.pg4e.com and made available under a
Creative Commons Attribution 4.0 License. Please maintain this
last slide in all copies of the document to comply with the
attribution requirements of the license. If you make a change, feel
free to add your name and organization to the list of contributors
on this page as you republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

Insert new Contributors and Translators here including names and
dates

Continue new Contributors and Translators here

