
Tools and Techniques

Charles Severance
www.pg4e.com/lectures/03-Techniques.sql

After CREATE TABLE

CREATE TABLE account (
id SERIAL,
email VARCHAR(128) UNIQUE,
created_at DATE NOT NULL DEFAULT NOW(),
updated_at DATE NOT NULL DEFAULT NOW(),
PRIMARY KEY(id)

);

CREATE TABLE post (
id SERIAL,
title VARCHAR(128) UNIQUE NOT NULL,
content VARCHAR(1024), -- Will extend with ALTER
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
PRIMARY KEY(id)

);

-- Allow multiple comments
CREATE TABLE comment (
id SERIAL,
content TEXT NOT NULL,
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
post_id INTEGER REFERENCES post(id) ON DELETE CASCADE,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
PRIMARY KEY(id)

);

CREATE TABLE fav (
id SERIAL,
oops TEXT, -- Will remove later with ALTER
post_id INTEGER REFERENCES post(id) ON DELETE CASCADE,
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
UNIQUE(post_id, account_id),
PRIMARY KEY(id)

);

We can adjust our schema
•Sometimes you make a mistake or your
application evolves

CREATE TABLE fav (
id SERIAL,
oops TEXT,
post_id INTEGER REFERENCES post(id) ON DELETE CASCADE,
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
UNIQUE(post_id, account_id),
PRIMARY KEY(id)

);

ALTER TABLE fav DROP COLUMN oops;

Add, Drop , Alter columns
•Can also alter indexes, uniqueness
constraints, foreign keys
•Can run on a live database

ALTER TABLE fav DROP COLUMN oops;

ALTER TABLE post ALTER COLUMN content TYPE TEXT;

ALTER TABLE fav ADD COLUMN howmuch INTEGER;

Reading commands from a file

discuss=> \i 03-Techniques-load.sql
DELETE 4
ALTER SEQUENCE
ALTER SEQUENCE
ALTER SEQUENCE
ALTER SEQUENCE
INSERT 0 3
INSERT 0 3
INSERT 0 5
discuss=>

-- https://www.pg4e.com/lectures/03-Techniques-Load.sql

-- Start fresh - Cascade deletes it all

DELETE FROM account;
ALTER SEQUENCE account_id_seq RESTART WITH 1;
ALTER SEQUENCE post_id_seq RESTART WITH 1;
ALTER SEQUENCE comment_id_seq RESTART WITH 1;
ALTER SEQUENCE fav_id_seq RESTART WITH 1;

...

Dates

Date Types (Review)
• DATE - 'YYYY-MM-DD'
• TIME - 'HH:MM:SS'
•TIMESTAMP - 'YYYY-MM-DD HH:MM:SS'
(4713 BC, 294276 AD)
• TIMESTAMPTZ – "TIMESTAMP WITH TIME
ZONE"
•Built-in PostgreSQL function NOW()

Setting default values
•We can save some code by auto-populating
date fields when a row is INSERTed
•We will auto-set on UPDATEs later…

CREATE TABLE fav (
id SERIAL,
post_id INTEGER REFERENCES post(id) ON DELETE CASCADE,
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
UNIQUE(post_id, account_id),
PRIMARY KEY(id)

);

TIMESTAMPTZ – Best Practice
•Store time stamps with timezone
•Prefer UTC for stored time stamps
•Convert to local time zone when retrieving

discuss=> SELECT NOW(), NOW() AT TIME ZONE 'UTC', NOW() AT TIME ZONE 'HST';
now | timezone | timezone

------------------------------+---------------------------+---------------------------
2019-06-10 11:42:51.52127-04 | 2019-06-10 15:42:51.52127 | 2019-06-10 05:42:51.52127

PostgreSQL time zones
discuss=> SELECT * FROM pg_timezone_names;

name | abbrev | utc_offset | is_dst
----------------------------------+--------+------------+--------
 Indian/Mauritius | +04 | 04:00:00 | f
 Indian/Chagos | +06 | 06:00:00 | f
 Indian/Mayotte | EAT | 03:00:00 | f
 Indian/Christmas | +07 | 07:00:00 | f
 Indian/Cocos | +0630 | 06:30:00 | f
Indian/Comoro | EAT | 03:00:00 | f

discuss=> SELECT * FROM pg_timezone_names WHERE name LIKE '%Hawaii%';
name | abbrev | utc_offset | is_dst

-----------+--------+------------+--------
US/Hawaii | HST | -10:00:00 | f

Casting to different types
•We use the phrase 'casting' to mean
convert from one type to another
•Postgres has several forms of casting

postgres=# SELECT NOW()::DATE, CAST(NOW() AS DATE), CAST(NOW() AS TIME);
now | now | now

------------+------------+-----------------
2019-06-10 | 2019-06-10 | 11:45:42.899995

Intervals
•We can do date interval arithmetic

postgres=# SELECT NOW(), NOW() - INTERVAL '2 days', (NOW() - INTERVAL '2 days')::DATE;
now | ?column? | date

-------------------------------+-------------------------------+------------
2019-06-10 11:56:34.886679-04 | 2019-06-08 11:56:34.886679-04 | 2019-06-08

Using date_trunc()
•Sometimes we want to discard some of the
accuracy that is in a TIMESTAMP

discuss=> SELECT id, content, created_at FROM comment
discuss-> WHERE created_at >= DATE_TRUNC('day',NOW())
discuss-> AND created_at < DATE_TRUNC('day',NOW() + INTERVAL '1 day');

id | content | created_at
----+---+------------
11 | I agree | 2019-06-10
12 | Especially for counting | 2019-06-10
13 | And I don't understand why | 2019-06-10
14 | Someone should make "EasySoup" or something like that | 2019-06-10
15 | Good idea - I might just do that | 2019-06-10

Performance: Table Scans
•Not all equivalent queries have the same
performance

discuss=> SELECT id, content, created_at FROM comment
discuss-> WHERE created_at::DATE = NOW()::DATE;

id | content | created_at
----+---+------------
11 | I agree | 2019-06-10
12 | Especially for counting | 2019-06-10
13 | And I don't understand why | 2019-06-10
14 | Someone should make "EasySoup" or something like that | 2019-06-10
15 | Good idea - I might just do that | 2019-06-10

DISTINCT / GROUP BY

Reducing the result set
•DISTINCT only returns unique rows in a
result set – and row will only appear once
•DISTINCT ON limits duplicate removal to a
set of columns
•GROUP BY is combined with aggregate
functions like COUNT(), MAX(), SUM(),
AVE() …

PostgreSQL
make | model

--------+---------
Nissan | Stanza
Dodge | Neon
Dodge | Neon
Dodge | Neon

Reducing a result set

make | model
--------+---------
Nissan | Stanza
Dodge | Neon

SELECT

DISTINCT

Racing Data discuss=> select * from racing;

make | model | year | price
--------+---------+------+-------
Nissan | Stanza | 1990 | 2000
Dodge | Neon | 1995 | 800
Dodge | Neon | 1998 | 2500
Dodge | Neon | 1999 | 3000
Ford | Mustang | 2001 | 1000
Ford | Mustang | 2005 | 2000
Subaru | Impreza | 1997 | 1000
Mazda | Miata | 2001 | 5000
Mazda | Miata | 2001 | 3000
Mazda | Miata | 2001 | 2500
Mazda | Miata | 2002 | 5500
Opel | GT | 1972 | 1500
Opel | GT | 1969 | 7500
Opel | Cadet | 1973 | 500

make | model | year | price
--------+---------+------+-------
Nissan | Stanza | 1990 | 2000
Dodge | Neon | 1995 | 800
Dodge | Neon | 1998 | 2500
Dodge | Neon | 1999 | 3000
Ford | Mustang | 2001 | 1000
Ford | Mustang | 2005 | 2000
Subaru | Impreza | 1997 | 1000
Mazda | Miata | 2001 | 5000
Mazda | Miata | 2001 | 3000
Mazda | Miata | 2001 | 2500
Mazda | Miata | 2002 | 5500
Opel | GT | 1972 | 1500
Opel | GT | 1969 | 7500
Opel | Cadet | 1973 | 500

SELECT DISTINCT model FROM racing;

model

Stanza
Neon
Mustang
Impreza
Miata
GT
Cadet

make | model | year | price
--------+---------+------+-------
Nissan | Stanza | 1990 | 2000
Dodge | Neon | 1995 | 800
Dodge | Neon | 1998 | 2500
Dodge | Neon | 1999 | 3000
Ford | Mustang | 2001 | 1000
Ford | Mustang | 2005 | 2000
Subaru | Impreza | 1997 | 1000
Mazda | Miata | 2001 | 5000
Mazda | Miata | 2001 | 3000
Mazda | Miata | 2001 | 2500
Mazda | Miata | 2002 | 5500
Opel | GT | 1972 | 1500
Opel | GT | 1969 | 7500
Opel | Cadet | 1973 | 500

SELECT DISTINCT ON (model)
make,model FROM racing;

make | model
--------+---------
Opel | Cadet
Opel | GT
Subaru | Impreza
Mazda | Miata
Ford | Mustang
Dodge | Neon
Nissan | Stanza

Lets play with time zones
discuss=> SELECT * FROM pg_timezone_names;

name | abbrev | utc_offset | is_dst
----------------------------------+--------+------------+--------
 Indian/Mauritius | +04 | 04:00:00 | f
 Indian/Chagos | +06 | 06:00:00 | f
 Indian/Mayotte | EAT | 03:00:00 | f
 Indian/Christmas | +07 | 07:00:00 | f
 Indian/Cocos | +0630 | 06:30:00 | f
Indian/Comoro | EAT | 03:00:00 | f

discuss=> SELECT * FROM pg_timezone_names WHERE name LIKE '%Hawaii%';
name | abbrev | utc_offset | is_dst

-----------+--------+------------+--------
US/Hawaii | HST | -10:00:00 | f

Aggregate / GROUP BY

discuss=> SELECT COUNT(abbrev), abbrev FROM pg_timezone_names GROUP BY abbrev;
count | abbrev
-------+--------

2 | +00
1 | PST
4 | IST
2 | -01
4 | HST
6 | +09
15 | +05
7 | ADT
1 | -12

...

HAVING clause
discuss=> SELECT COUNT(abbrev) AS ct, abbrev FROM pg_timezone_names
discuss-> WHERE is_dst= 't' GROUP BY abbrev HAVING COUNT(abbrev) > 10;

ct | abbrev
----+--------
12 | PDT
22 | EEST
24 | CDT
36 | CEST
28 | EDT
15 | MDT

Sub-Queries

A query within an query
•Can use a value or set of values in a query
that are computed by another query

SELECT * FROM account
WHERE email='ed@umich.edu';

SELECT content FROM comment
WHERE account_id = 7;

SELECT content FROM comment
WHERE account_id = (SELECT id FROM account WHERE email='ed@umich.edu');

PostgreSQL

id

7

Sub Query

SELECT
SELECT

content

Hello World

HAVING clause
discuss=> SELECT COUNT(abbrev) AS ct, abbrev FROM pg_timezone_names
discuss-> WHERE is_dst= 't' GROUP BY abbrev HAVING COUNT(abbrev) > 10;

ct | abbrev
----+--------
12 | PDT
22 | EEST
24 | CDT
36 | CEST
28 | EDT
15 | MDT

Using a Sub-Query
discuss=> SELECT ct, abbrev FROM
discuss-> (
discuss-> SELECT COUNT(abbrev) AS ct, abbrev
discuss-> FROM pg_timezone_names
discuss-> WHERE is_dst = 't' GROUP BY abbrev
discuss->) AS zap
discuss-> WHERE ct > 10;
ct | abbrev
----+--------
12 | PDT
22 | EEST
24 | CDT
36 | CEST
28 | EDT
15 | MDT

Concurrency

Concurrency
•Databases are
designed to
accept SQL
commands from a
variety of sources
simultaneously
and perform
them
atomically

PostgreSQL

UPDATE tracks SET count=count+1
WHERE id = 42

42 | 100

UPDATE tracks SET count=count+1
WHERE id = 42

UPDATE tracks SET count=count+1
WHERE id = 42

Transactions and Atomicity
•To implement atomicity, PostgreSQL "locks"
areas before it starts an SQL command
that might change an area of the database
•All other access to that area must wait until
the area is unlocked

UPDATE tracks
SET count=count+1
WHERE id = 42

LOCK ROW 42 OF tracks
READ count FROM tracks ROW 42
count = count + 1
WRITE count TO tracks ROW 42
UNLOCK ROW 42 OF tracks

Single SQL Statements are Atomic
•All the inserts will work and get a unique
primary key
•Which account gets which key is not
predictable

INSERT INTO account(email)
VALUES('ed@umich.edu');

INSERT INTO account(email)
VALUES('sue@umich.edu');

INSERT INTO account(email)
VALUES('sally@umich.edu');

PostgreSQL

Compound Statements
•There are statements which do more than
one thing in one statement for efficiency
and concurrency.

INSERT INTO fav (post_id, account_id, howmuch)
VALUES (1,1,1)

RETURNING *;

UPDATE fav SET howmuch=howmuch+1
WHERE post_id = 1 AND account_id = 1

RETURNING *;

ON CONFLICT
•Sometimes you "bump into" a constraint on
purpose
-- This will fail
INSERT INTO fav (post_id, account_id, howmuch)

VALUES (1,1,1)
RETURNING *;

INSERT INTO fav (post_id, account_id, howmuch)
VALUES (1,1,1)
ON CONFLICT (post_id, account_id)
DO UPDATE SET howmuch = fav.howmuch + 1

RETURNING *;

Multi-Statement Transactions
BEGIN;
SELECT howmuch FROM fav WHERE account_id=1 AND post_id=1 FOR UPDATE OF fav;
-- Time passes...
UPDATE SET howmuch=999 WHERE account_id=1 AND post_id=1;
ROLLBACK;
SELECT howmuch FROM fav WHERE account_id=1 AND post_id=1;

BEGIN;
SELECT howmuch FROM fav WHERE account_id=1 AND post_id=1 FOR UPDATE OF fav;
-- Time passes...
UPDATE SET howmuch=999 WHERE account_id=1 AND post_id=1;
COMMIT;
SELECT howmuch FROM fav WHERE account_id=1 AND post_id=1;

Play	with	this	with	two	windows	open	J

Transactions and Performance
•The implementation of transactions makes
a big difference in database performance
• Lock granularity
• Lock implementation

Transaction Topics
•Lock strength UPDATE, NO KEY UPDATE
•What to do when encountering a lock
(WAIT), NOWAIT, SKIP LOCKED

Stored Procedures

Stored Procedures
•A stored procedure is a bit of reusable code
that runs inside of the database server
•Technically there are multiple language
choices but just use "plpgsql"
•Generally quite non-portable
•Usually the goal is to have fewer SQL
statements

Stored Procedures
•You should have a strong reason to use a
stored procedure
• Major performance problem
• Harder to test / modify
• No database portability
• Some rule that *must* be enforced

Recall
CREATE TABLE fav (
id SERIAL,
post_id INTEGER REFERENCES post(id) ON DELETE CASCADE,
account_id INTEGER REFERENCES account(id) ON DELETE CASCADE,
created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
UNIQUE(post_id, account_id),
PRIMARY KEY(id)

);

UPDATE fav SET howmuch=howmuch+1
WHERE post_id = 1 AND account_id = 1;

UPDATE fav SET howmuch=howmuch+1, updated_at=NOW()
WHERE post_id = 1 AND account_id = 1;

Using a trigger for updated_at
CREATE OR REPLACE FUNCTION trigger_set_timestamp()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = NOW();
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER set_timestamp
BEFORE UPDATE ON fav
FOR EACH ROW
EXECUTE PROCEDURE trigger_set_timestamp();

UPDATE fav SET howmuch=howmuch+1
WHERE post_id = 1 AND account_id = 1;

DEMO
Reading and Parsing Files

CSV -> Normalized Database

discuss=> select * from xy;
id | x | y_id

----+-----+------
1 | Zap | 2
2 | Zip | 2
3 | One | 1
4 | Two | 1

discuss=> select * from y;
id | y

----+---
1 | B
2 | A

03-Techniques.csv :

Zap,A
Zip,A
One,B
Two,B

DEMO

Summary

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
[* | expression [[AS] output_name] [, ...]]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY grouping_element [, ...]]
[HAVING condition [, ...]
[ORDER BY expression [ASC | DESC | USING operator]
[LIMIT { count | ALL }] [OFFSET start [ROW | ROWS]]
[FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE }

[OF table_name [, ...]] [NOWAIT | SKIP LOCKED] [...]]

https://www.postgresql.org/docs/11/sql-select.html

Acknowledgements	/	Contributions

These	slides	are	Copyright	2019- Charles	R.	Severance	(www.dr-
chuck.com)	as	part	of	www.pg4e.com	and	made	available	under	a	
Creative	Commons	Attribution	4.0	License.		Please	maintain	this	last	slide	
in	all	copies	of	the	document	to	comply	with	the	attribution	
requirements	of	the	license.		If	you	make	a	change,	feel	free	to	add	your	
name	and	organization	to	the	list	of	contributors	on	this	page	as	you	
republish	the	materials.

Initial	Development:	Charles	Severance,	University	of	Michigan	School	of	
Information

Insert	new	Contributors	and	Translators	here	including	names	and	dates

Continue	new	Contributors	and	Translators	here

