
Database Architectures

Charles Severance

Database Normalization (3NF)
There is *tons* of database theory - way
too much to understand without excessive
predicate calculus
• Do not replicate data. Instead, reference data.
Point at data.
• Use integers for keys and for references.
• Add a special “key” column to each table, which
you will make references to.

http://en.wikipedia.org/wiki/Database_normalization

To SQL or no to SQL?
That is the question.. Or is it?

Relational or Not?
Rows and Columns vs. Documents, Keys, and Values

ACID or BASE?
Probably the best question to ask.

https://en.wikipedia.org/wiki/ACID

••AtomicityA

••ConsistencyC

••IsolationI

••DurabilityD

••BasicallyB
••AvailableA
••Soft	stateS
••Eventual	consistencyE

https://en.wikipedia.org/wiki/Eventual_consistency

X	=	10

What	is	X?

X	=	20

X:	42

https://en.wikipedia.org/wiki/ACID

https://en.wikipedia.org/wiki/Thymol_blue

X:	20

X	=	10

What	is	X?

X	=	20

https://en.wikipedia.org/wiki/ACID

X:	10

X	=	10

What	is	X?

https://en.wikipedia.org/wiki/ACID

X:	42@0

X	=	10

What	is	X?

X	=	20

X:	42@0

X:	42@0

https://en.wikipedia.org/wiki/Eventual_consistency

https://en.wikipedia.org/wiki/Thymol_blue

X:	10@1

X	=	10

What	is	X?

X	=	20

X:	42@0

X:	42@0

X:	10@1 What	is	X?

X	=	20

X:	42@0

X:	20@2

X:	10@1 What	is	X?

X:	42@0

X:	20@2

X:	10@1 What	is	X?

X:	10@1

X:	20@2

X:	10@1 What	is	X?

X:	20@2

X:	20@2

X:	20@2 What	is	X?

X:	20@2

X:	20@2
https://en.wikipedia.org/wiki/Thymol_blue

https://en.wikipedia.org/wiki/Eventual_consistency

Database Software
•ACID (Atomic)
• Oracle
• PostgreSQL
• MySQL
• SQLite
• SQLServer

•BASE (Eventual)
• Mongo
• Casandra
• BigTable

Compromises
•ACID (Atomic)
• SERIAL INTEGER
keys
• Transactions

• UNIQUE Constraints

• "One perfect SQL
Statement"

•BASE (Eventual)
• GUIDs – Globally
Unique IDs
• Design for stale
data in application
• Application post-
check and resolve
• Retrieve and throw
away

Scaling ACID Databases
Why did we look at BASE at all?

Vertical Scaling
•More disk drives or disk arrays / RAID
•More processors
•More memory
•Switch from spinning to solid state drives
• Modern SSD drives have scatter / gather

•Has been solidly successful over the years

Master / Read Only Replicas

Master
Database

S
Q
L

R
O
U
T
E
R

Transaction
Log

Replica
Database

INSERT
UPDATE

READ/LOCK
BEGIN

SELECT
JOIN

COUNT
…

Replica
Database

SQL

Multi-Master

Master
DatabaseS

Q
L

R
O
U
T
E
R

Transaction
Log

Replica
Database

INSERT
UPDATE

READ/LOCK
BEGIN

SELECT
JOIN

COUNT
…

SQL Master
Database

Transaction
Log

Replica
Database

Multiple Store Types

A
P
P
L
I
C
A
T
I
O
N

Master
DatabaseSQL

id blob
1 a6fed54
2 097de19

File System

a6fed54
097de19

open()

Multi-Tenant / "Pretend Cloud"

A
P
P
L
I
C
A
T
I
O
N

Client1

Client2

Client3

Client4

Client1000

Client1001

…

https://nces.ed.gov/ipeds/CollegeMap/

Email
2002

First Generation True
Cloud Applications….

https://nces.ed.gov/ipeds/CollegeMap/

Email
2002

https://web.archive.org/web/19990428171538/http://google.com/

Email
2009

Google Could Not use RDBMS
•They also chose applications that did not
need transactions
• Everything was free – or "the first ~100Mb was
free"
• Updates were widely distributed – even to email

•Early Google Applications were not
FaceBook or Twitter
•They could use cleverly named files and
folders and sharding / hashing across
servers

Searching / Scatter - Gather
•Google I/O June 2008 Keynote
•Marissa Mayer

https://www.youtube.com/watch?v=6x0cAzQ7PVs

Google Container Tour
•Google Efficient Data Centers Summit April
1, 2009.

https://www.youtube.com/watch?v=zRwPSFpLX8I

Google – How Search Works
•Matt Cutts – March 2010

https://www.youtube.com/watch?v=BNHR6IQJGZs

Watch the Cloud Videos

Searching / Scatter - Gather
•Google I/O June 2008 Keynote
•Marissa Mayer

https://www.youtube.com/watch?v=6x0cAzQ7PVs

Google Container Tour
•Google Efficient Data Centers Summit April
1, 2009.

https://www.youtube.com/watch?v=zRwPSFpLX8I

Google – How Search Works
•Matt Cutts – March 2010

https://www.youtube.com/watch?v=BNHR6IQJGZs

https://web.archive.org/web/20060818023744/http://www.amazon.com/b?ie=UTF8&node=3435361

Early Amazon Web Services Pricing
•Large / slow disks were inexpensive
•Small quick CPUs with small amounts of
memory were inexpensive

•Applications that responded to load by
dynamically adding small servers and slow
disk were ideal

https://pages.mtu.edu/~steve/CSERI/

Efficient use of "carpet clusters"
•Spread data out across many system
•Scatter the query to all the systems
•Gather the results
• (a.k.a. Map-Reduce)
•A single query might be 1-2 seconds
•Many queries could be "in flight" at the same
time (need a fast network)
• You might just run a RDBMS on each node and
shard

Second Generation Cloud
Scale Applications

FaceBook is More Challenging
•Friend lists – edit / add / drop / find
•Privacy
•Everyone sees a very different view
•Everyone searches a different corpus

•Data locking for predictable update is
replaced by data sharding and replication
•Migrate data "to be close" to the viewer

A-F

G-M

N-R

S-Z

Annie
friends: Greg, Sarah
status
Greg: Pizza

Greg
friends: Annie, Ron
status:

Me: Pizza

Sarah
friends: Annie
outbound: Ron

Ron
friends: Greg
inbound: Ron
status:
Greg: Pizza

status:

A-F

G-M

N-R

S-Z

Annie
friends: Greg, Sarah
status
Greg: Pizza
Me: 👍

Greg
friends: Annie, Ron
status:

Me: Pizza

Sarah
friends: Annie
outbound: Ron

Ron
friends: Greg
inbound: Ron
status:
Greg: Pizza

status:

A-F

G-M

N-R

S-Z

Annie
friends: Greg, Sarah
status
Greg: Pizza
Me: 👍

Greg
friends: Annie, Ron
status:

Me: Pizza
Anne: 👍

Sarah
friends: Annie
outbound: Ron

Ron
friends: Greg
inbound: Ron
status:
Greg: Pizza
Annie: 👍 (??)

status:
Greg: Pizza (??)
Annie: 👍 (??)

Problems to Solve
•Clever non-locking solutions to distribution
• GUIDs for primary keys
• Hashing / Sharding for predictable data
placement / lookup

•Some central control – mostly "what is
where"
•Perhaps use one or more RDBMS for taking
money or new accounts

[[A	person	sits	at	a	table,	eating	a	meal.]]
Person:	Can	you	pass	the	salt?

[[The	person	pauses,	a	bite	of	food	on	his	fork,	silently.]]

[[The	person	still	has	fork	in	mid-air.]]
Person:	I	said--
Off-screen	Person:	I	know!	I'm	developing	a	system	to	pass	you	arbitrary	condiments.
Person:	It's	been	20	minutes!
OSP:	It'll	save	time	in	the	long	run!

The Emergence of BASE
Solutions (i.e. NoSQL)

The basic principles of BASE DBMS
•Everything is distributed – fast network
•No locks (*)
•Lots of fast / small memory CPUs
•Lots of disks
• Indexes follow data shards
•Documents not rows / columns
•Schema on read – not schema on write(*)

JSON Ascending
• JSON is a great way to represent / move /
store structured data
•Fast parsers in every programming
language
•Easily compressed to
save storage and transfer

{
"superlongkey" : 42;

}

{
"superlongkey" : 43;

}

Open Source NoSQL databases
•CouchDB (2008)
• Cluster Of Unreliable Commodity Hardware

•MongoDB – 2009
• Distributed JSON storage

•Cassandra – 2008
• From FaceBook
• Also Apache Hadoop – Map / Reduce

•ElasticSearch – 2010
• Initially full text search Apache Lucene
• Evolved into JSON database

Proprietary / Software AS a Service
(SAAS) NoSQL Databases
•Amazon DynamoDB
• Backed the Amazon catalog

•Google BigTable
• Stored Google's copy of the web

•Azure Table Storage
• Catching up J

https://commons.wikimedia.org/wiki/File:Gold_Pan.jpg

Every Startup 2010-Present

Be like FaceBook – Make Money
•Emergence of client-side applications
• Backbone, Angular, React, Vue …

•Emergence of JavaScript in the server
• node.js – great at asynch / micro services

•NoSQL databases
• Distributed, scalable, inexpensive resources

•Lots of startups / fresh ground up
development

Gartner
Hype
2012

Case Study - Vericite
•Startup founded in 2014 – expected 100TB
• Cloud / multi-tenant / document based

•Used MySQL for POC – Did not want to shard
•Built on Cassandra and "owned hardware"
•Cassandra fell down at scale - consultant
•Switched to Amazon DynamoDB
• Works – expensive but cheaper than consultants

•NoSQL database competed against larger firm
using custom storage on physical hardware

Reacting to the rise of
NoSQL

But That's Not All…
•The ACID vendors saw market share
slipping away circa 2013
•As NoSQL applications matured they found
that application developers wanted "a few"
transactions and JOINs

•ACID + BASE became the new sweet spot

Technology Changes 2009-2019
•AWS Could sell you 32 CPU systems with
large amounts of RAM cheaper than you
could own them
•Solid State Disk developed scatter / gather
on a single drive with 32 + simultaneous
reads to different areas of the drive

RDBMS Vendors reacted
•Oracle
• JSON Columns
• NoSQL Features

•MySQL 8.0 – JSON Columns
• PostgreSQL
• 8.3 HSTORE Columns (2008 and 2014)
• 9.2 JSON Columns (2012)
• 9.4 JSONB Columns (2014)

•Amazon Redshift is based on a "modified"
PostgreSQL 8.0 (2013)

ACID + BASE or BASE + ACID
• It turns out to be easier to relax ACID than
to do the research and development to
implement ACID in a system that is
distributed at its core
•SQL does not imply ACID
•BASE runtime databases are adopting SQL
syntax for some of their operations to
make it easier for developers

BASE

Hybrid (Hypothetical)

ACID MasterS
Q
L

R
O
U
T
E
R

Transaction
Log

INSERT
UPDATE

READ/LOCK
BEGIN

SELECT
JOIN

COUNT
…

SQL Read Replica

INSERT
UPDATE

Read Replica

BASE

Being BASE-Like in ACID RDBMS
•Do not normalize – Replicate
•Don't use SERIAL - use UUID
•Columns are for indexing
•Do not use foreign keys or don't mark
them as such
•Design your schema / indexes to enable
reading a single row on query

https://www.wix.engineering/post/scaling-to-100m-mysql-is-a-better-nosql

Being BASE-Like in ACID RDBMS
•Use software migrations instead of ALTER
•Query for records by primary key or by
indexed column
•Do not use JOINs
•Do not use aggregations (COUNT ??)

https://www.wix.engineering/post/scaling-to-100m-mysql-is-a-better-nosql

Summary
•NoSQL is doing well
• More for specialized applications
• Less conversation about the "end of SQL"
• Breathless is becoming pragmatic
• There is a learning curve - production experience
• SASS from cloud vendors makes it "easier"

•Some applications converting back
• "Move from MongoDB to PostgreSQL"

•Review: Why PostgreSQL for this course?

Acknowledgements	/	Contributions

These	slides	are	Copyright	2019- Charles	R.	Severance	(www.dr-
chuck.com)	as	part	of	www.pg4e.com	and	made	available	under	a	
Creative	Commons	Attribution	4.0	License.		Please	maintain	this	last	slide	
in	all	copies	of	the	document	to	comply	with	the	attribution	
requirements	of	the	license.		If	you	make	a	change,	feel	free	to	add	your	
name	and	organization	to	the	list	of	contributors	on	this	page	as	you	
republish	the	materials.

Initial	Development:	Charles	R.	Severance,	University	of	Michigan	School	
of	Information

Insert	new	Contributors	and	Translators	here	including	names	and	dates

Continue	new	Contributors	and	Translators	here

